Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal.

نویسندگان

  • Amjad Javed
  • Jong-Sup Bae
  • Faiza Afzal
  • Soraya Gutierrez
  • Jitesh Pratap
  • Sayyed K Zaidi
  • Yang Lou
  • Andre J van Wijnen
  • Janet L Stein
  • Gary S Stein
  • Jane B Lian
چکیده

Two regulatory pathways, bone morphogenetic protein (BMP)/transforming growth factor-beta (TGFbeta) and the transcription factor RUNX2, are required for bone formation in vivo. Here we show the interdependent requirement of these pathways to induce an osteogenic program. A panel of Runx2 deletion and point mutants was used to examine RUNX2-SMAD protein-protein interaction and the biological consequences on BMP2-induced osteogenic signaling determined in Runx2 null cells. These cells do not respond to BMP2 signal in the absence of Runx2. We established that a triple mutation in the C-terminal domain of RUNX2, HTY (426-428), disrupts the RUNX2-SMAD interaction, is deficient in its ability to integrate the BMP2/TGFbeta signal on promoter reporter assays, and is only marginally functional in promoting early stages of osteoblast differentiation. Furthermore, the HTY mutation overlaps the unique nuclear matrix targeting signal of Runx factors and exhibits reduced subnuclear targeting. Thus, formation of a RUNX2-SMAD osteogenic complex and subnuclear targeting are structurally and functionally inseparable. Our results establish the critical residues of RUNX2 for execution and completion of BMP2 signaling for osteoblastogenesis through a mechanism that requires RUNX2-SMAD transcriptional activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs.

This study investigated the effects of altered CXCL12/CXCR4 axis on the bone morphogenetic protein 2 (BMP-2)/Smad/runt-related transcription factor 2 (Runx2)/Osterix (Osx) signal axis and osteogenic gene expression during osteogenic differentiation of mesenchymal stem cells (MSCs), to gain understanding of the link between migration and osteogenic differentiation signal axis and MSCs osteogenic...

متن کامل

Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation.

NELL1 is an extracellular protein inducing osteogenic differentiation and bone formation of osteoblastic cells. To elucidate the intracellular signaling cascade evoked by NELL1, we have shown that NELL1 protein transiently activates the MAPK signaling cascade, induces the phosphorylation of Runx2, and promotes the rapid intracellular accumulation of Tyr-phosphorylated proteins. Unlike BMP2, NEL...

متن کامل

Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP2 Stimulates Proliferation and Osteogenic Differentiation In Vitro

Clinical trials using bone morphogenetic protein-2 (BMP2) for bone reconstruction have shown promising results. However, the relatively high concentration needed to be effective raises concerns for efficacy and safety. The aim of this study was to investigate the osteogenic effect of an alternative treatment strategy in which human bone marrow-derived mesenchymal stem cells (hMSCs) are precondi...

متن کامل

BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network.

Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we s...

متن کامل

Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells.

BACKGROUND/AIMS Insulin-like growth factor binding proteins (IGFBP) play important roles in bone metabolism. IGFBP4 is involved in senescent-associated phenomena in mesenchymal stem cells (MSCs). The goal of the present study was to determine whether age-related IGFBP4 overexpression is associated with the impaired osteogenic differentiation potential of aged bone marrow derived MSCs. METHODS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 13  شماره 

صفحات  -

تاریخ انتشار 2008